Atomic Nuclei  
The structures of the atomic nuclei have remained unsolved since the discovery of the atomic nucleus by Ernest Rutherford in the early 20th century.  

A new atomic model, and a recognition of a link between electron bonding configurations and the geometry of atomic nuclei, is now allowing nucleus structures to be resolved.

Proposed structures are typically based on unpaired and paired deuterium nuclei composites, with additional single and double neutrons, but can also include tritium nuclei.  Unpaired deuterium and tritium nuclei are bonding composites, forming pairs with bonding composite in other nuclei, via chemical bonds. Paired deuterium nuclei are non-bonding and are typically co-located as alpha particle composites. 




Do the Atomic Nuclei Have
Formal Structures?


A range of different types of structures for the atomic nuclei have been proposed, including gaseous, liquid, molecular cluster, lattice and composite types.

Cook (2010) presented a detail discussion, comparing different types of structures and concluded that a lattice type structure was most consistent with experimental observations.  

Lattice proposals to date have typically been based on either face centred cubic (FCC) packing (Wigner, 1937, Everling, 1958, Lezuo, 1974, Cook, 1976) or simple cubic packing (SCP), (Bauer, 1985, Meissner, 2008, Mathis, 2011), but have not  yet been able to demonstrate geometric simplicity or full consistency with isotopic patterns and experimental observations.


"The new nucleus structures clearly show  geometric simplicity and symmetry for isotopes throughout periodic table."

<---- neutron
"The new model demonstrates that chemistry originates from nucleus structures!!!"
<----  alpha particle
        (non bonding)



Proposed Krypton 86 Atomic Nucleus Structure

Proposed Structures
Proposed structures are based on composites containing one or two neutrons. Each neutron is modelled as forming of four directional "nuclear bonds". Double neutron composites form eight bonds.    

The proton component of composites form single "nuclear bonds" with another proton within the nucleus (non-bonding pairs), or alterntively are available to form a chemical bond with a proton in another nucleus via a chemical bond.

Nucleus structures are geometric and directly match chemical bonding coordination numbers and observed solid phase crystal structures.

​​

"Nuclear bonds" are directional​.

Body Centred Cubic - Hex Packing
Hydrogen
Proposed nucleus structures for hydrogen isotopes are nucleon composites, rather than linked individual nucleons.


Hydrogen 3
Hydrogen 1
Hydrogen 2
s: 1p
s: 1p, 1n
s: 1p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Protium
Tritium (radioactive)
Deuterium
Helium and Noble (Inert) Gases
Noble (Inert) gases are unique as they form almost no chemical compounds with other elements. The proposed relationship between chemical bonding orientations and nuclei structures suggests a special geometric symmetry for Noble gas nuclei.  

Proposed Noble gas nuclei structures have some similarities to geometries proposed by Cook (1978), but are based on deuterium pairs (alpha composites), rather than individual nucleons.  

Proposed Noble gas nucleus structures have geometric symmetry, forming "complete" outer shells, with minimal availablity for chemical bonding, except for basic dimers (He2, Ne2, Ar2, etc.), consistent with observed chemistry.

Neon 20
Helium 3
Helium 4
s: -
s: 2p, 1n
s: 2p, 2n
p: 2p, 2n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Argon 36
Neon 21
Neon 22
s: 2p, 2n
s: 2p, 2n
d: 1n 
s: 2p, 2n
      d: 1n (x2)
Copyright S. Brink.
Copyright S. Brink.
p: 2p, 2n (x8)
p: 2p, 2n (x4)
p: 2p, 2n (x4)
Copyright S. Brink.
Krypton 78
Argon 38
Argon 40
?: 2p,2n (x12)
s: 6n
s: 2p, 2n
d: 1n (x2)
s: 2p, 2n
d: 2n (x2)
p: 1p, 1n
d: 2p,2n (x6)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Krypton 83
Krypton 80
Krypton 82
?: 2p,2n (x12)
s: 11n
?: 2p,2n (x12)
?: 2p,2n (x12)
s: 8n
s: 10n
p: 1p, 1n
Copyright S. Brink.
d: 2p,2n (x6)
Copyright S. Brink.
d: 2p,2n (x6)
Copyright S. Brink.
d: 2p,2n (x6)
Xenon 124
Krypton 84
Krypton 86
Copyright S. Brink.
s: 2p, 2n
?: 2p,2n (x12)
?: 2p,2n (x12)
s: 12n
s: 14n
Copyright S. Brink.
p/d: 1n (x16)
       ?: 2p, 2n (x26)
Copyright S. Brink.
d: 2p, 2n (x6)
d: 2p,2n (x6)
Xenon 129
Xenon 126
Xenon 128
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
p/d: 1n (x21)
       ?: 2p, 2n (x26)
p/d: 1n (x18)
       ?: 2p, 2n (x26)
       ?: 2p, 2n (x26)
p/d: 1n (x20)
Xenon 132
Xenon 130
Xenon 131
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
p/d: 1n (x24)
       ?: 2p, 2n (x26)
p/d: 1n (x22)
       ?: 2p, 2n (x26)
p/d: 1n (x23)
       ?: 2p, 2n (x26)
Radon 222
Xenon 134
Xenon 136
Copyright S. Brink.
Copyright S. Brink.
s: 2p, 2n
s2: 1n (x26)
       1n (x24)
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
?: 2p,2n (x42)
p/d: 1n (x26)
       ?: 2p, 2n (x26)
p/d: 1n (x28)
       ?: 2p, 2n (x26)
Radioactive
Radioactive
Oganesson 294
?: 1n (x24)
?: 2n (x8)
? 1n (x18)
s: 2p, 2n
?: 2p, 2n (x32)
Copyright S. Brink.
?: 2p,2n (x26)
Highly unstable, four atoms detected. 
Lithium and Alkali Metals (Group I)
The proposed structure of Lithium isotopes are distict from the structures of the other Group I alkali metal elements, particularly as they feature  "double nuclear bonds" between neutrons. 

Proposed structures for other Group I Alkali metals are similar to the preceeding Noble Gas element, but have an additional proton, potentially as a tritium nuclei composite (Na, K, Rb), or as a deuterium nuclei (Cs).

Proposed nucleus structures are shown below: 

Sodium 23
Lithium 6
Lithium 7
d: 1p,1n & 1n
s: 2p, 2n
s: -
s: -
p: 1p, 1n / 1n (half filled)
p: 2p,2n (x4)
Copyright S. Brink.
p: 1p, 1n
Copyright S. Brink.
Copyright S. Brink.
Potassium 41 
Potassium 39
Potassium 40
   d: 2p,1n / 2n
 d: 1p,1n / 1n
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
 d: 1p,1n / 2n
p: 1p, 1n (x8)
Copyright S. Brink.
p: 1p, 1n (x8)
p: 1p, 1n (x8)
Copyright S. Brink.
Copyright S. Brink.
Slightly radioactive
Cesium 133 
Rubidium 85
Rubidium 87 
s: 2p, 2n
  ?: 1n (x19), 1p,1n (x1)
s: 1p, 2n
?: 2p, 2n (x12)
s: 1p, 2n
?: 2p, 2n (x12)
s2: 10n
s2: 12n
?: 2p, 2n (x26)
d: -
Copyright S. Brink.
d: 2p, 2n (x6)
d: 2p, 2n (x6)
Copyright S. Brink.
Copyright S. Brink.
Francium 223
Copyright S. Brink.
Highly radioactive
Beryllium and Alkaline Earth Metals (Group II)
The proposed struture for the Beryllium 9 nucleus is unique, featuring four deuterium nuclei and a central neutron in an expanded planar configuration, consistent with its observed large fast neutron capture cross section (~6 barns).  Neutrons are linked by double "nuclear bonds".  

Other Group II elements are similar to preceeding Noble Gases, but have two additional  composites with unpaired protons that are available for chemical bonding. 

Proposed nuclei structures are shown below: 

Beryllium 9
Magnesium 24
Magnesium 25
s: 1n
s: 2p, 2n
s: 2p, 2n
p: 1p, 1n
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x4), 1p,1n (x2), 1n
Copyright S. Brink.
p: 2p,2n (x4), 1p,1n (x2)
Magnesium 26
Calcium 42
Calcium 40
s: 2p, 2n
s: 2p, 2n
d: 1p, 1n (x2)
            1n (x2)
s: 2p,2n
d: 1p, 1n (x2)
p: 2p,2n (x4), 1p,1n (x2), 2n (x2)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
Calcium 43
Calcium 44
Calcium 46 
s: 2p,2n
d: 1p, 1n (x2)
            1n (x3)
s: 2p,2n
s: 2p,2n
d: 1p, 2n (x2)
            1n (x4)
d: 1p, 1n (x2)
             1n (x4)
s2: 1n & 2n
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Calcium 48
Strontium 84
Strontium 86
?: 2p,2n (x18)
s: -
?: 2p,2n (x18)
s: 2p,2n
d: 1p, 1n (x2)
           2n (x4)
s: -
s2: 1n (x4)
d2: 1n (x4)
d: 2p, 2n
p: 2p, 2n (x8)
d: 2p, 4n
Copyright S. Brink.
p: 1n (x8)
Copyright S. Brink.
p: 1n (x8)
Copyright S. Brink.
Radioactive
Strontium 87 
Strontium 88
Barium 130 
     ?: 1n (x12)
s: -
?: 2p,2n (x18)
?: 2p,2n (x18)
s: -
s: 2p, 2n
d: 2p, 5n 
p: 1n (x8)
d: 2p, 6n
      ?: 2p,2n (x26)
d: 2p, 6n
Copyright S. Brink.
Copyright S. Brink.
p: 1n (x8)
Copyright S. Brink.
Radioactive
Barium 132  
Barium 134
Barium 135 
       ?: 1n (x14)
?: 1n (x17)
s: 2p, 2n
       ?: 1n (x16)
s: 2p, 2n
s: 2p, 2n
      ?: 2p,2n (x26)
d: 2p, 6n 
d: 2p, 6n
      ?: 2p,2n (x26)
d: 2p, 6n
      f? 2p,2n (x26)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Barium 136 
Barium 137
Barium 138
?: 1n (x20)
s: 2p, 2n
?: 1n (x18)
s: 2p, 2n
?: 1n (x19)
s: 2p, 2n
d: 2p, 6n
      ?: 2p,2n (x26)
d: 2p, 6n 
      ?: 2p,2n (x26)
Copyright S. Brink.
Copyright S. Brink.
d: 2p, 6n 
      ?: 2p,2n (x26)
Radium 226 
Copyright S. Brink.
s2: 26n
​s3: 24n
s: 2p, 2n
?: 2p, 2n (x42)
?: 1p, 1n (x2)
Note: Radioactive
Boron, Carbon, Nitrogen and Oxygen
The propsed nucleus structures of these common elements have a variety of interesting attributes.  

Boron 10 is distinct, having only five composites, so is expected to be arranged in an open planar structure, consistent with the observed high neutron capture cross section for this isotope.

Carbon nuclei may multiple structural isomers, depending on the type of carbon, i.e. organic, graphite or diamond.

Nitrogen 14 and Oxgyen 16 are expected to include a central alpha particle (deuterium nuclei aligned in opposing directions), single "bonding" deuterium nuclei, and additional "unaligned" deuterium nuclei composites that are are respponsible for electron "lone pairs."  
Boron 10
Boron 11
Carbon 12
s: 1p, 1n
s: -
s: -
d: 1p, 1n (x4)
d: 1p, 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
 d: 1p, 1n (x5) / n
Organic
Carbon 12
Carbon 12 
Carbon 13
s: -
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
p: 1p, 1n (x4)
d: 1p, 1n (x6)
Copyright S. Brink.
p: 1p, 1n (x4)
Diamond
Graphite
Diamond
Carbon 14
Nitrogen 14
Oxygen 16
p: 1p, 1n (x5)
s: 2n
s: 2p, 2n
s: 2p, 2n
               lone​​​​​​​​ pair   ------>
    <--- orientations

         lone​​​​​​  pair
     orientation  ---->

p: 1p, 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
?: 1p, 1n (x6)
Graphite
Fluorine and the Halogens
Halogens are highly electronegative elements, forming ionic and covalently bonded compounds, typically with electro positive elements, such as alkali metals (Group I), alkaline earth metals (Group II) and other metals. Proposed structures are as follows:
Fluorine 19
Chlorine 35
Chlorine 37 
s: 1p, 2n
s: 1p, 2n
s: 1p, 2n
d: 1n (x2)
Copyright S. Brink.
p: 2p, 2n (x4) 
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Bromine 79
Bromine 81
Iodine 127 
d: 1/2p,2n (x6)
d: 1/2p,2n (x6)
s: 1p, 2n
s: -
s: 2n
      d2: 1n (x12)
?: 2p,2n (x12)
Copyright S. Brink.
p: 1n (x8)
?: 2p,2n (x12)
p: 1n (x8)
d: 1n (x4)
?: 2p, 2n (x26)
Copyright S. Brink.
Copyright S. Brink.
Astatine 209
s: 1p, 2n
Note: Highly radioactive
Aluminium, Silicon, Phosphorous and Sulfur
Proposed structures for the second elements in groups 13-16 are based around 14 composites, generally deuterium nuclei, (1p,1n) and single neutrons (1n), arranged as six composites in an octagonal shape ('d' shell), with an outer shell of eight face-centred composites ('p' shell).  Additional composites are added centrally ('s' shell).  The 's' shell is overfilled for Sulfur 33, 34 and 36, 

Aluminium 27
Silicon 28
Silicon 29  
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
d: 1n
p: 2p, 2n (x4), 1p,1n (x3), 1n
p: 2p,2n (x4), 1p,1n (x4)
p: 2p, 2n (x4), 1p,1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Silicon 30
Phosphorous 31
Sulfur 32
d: 1n (x2)
d: 1p,1n & 1n
d: 1p,1n (x2)
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
p: 2p,2n (x4), 1p,1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
p: 2p, 2n (x4), 1p,1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Sulfur 33  
Sulfur 34
Sulfur 36
d: 1p,1n & 
      1p,2n
s: 2p, 2n
s: 2p, 2n
d: 1p,2n (x2)
s: 2p, 2n
d: 1p,1n (x2)
    & 1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Transition Metals (1st Series) + Zn
Proposed nucleus structures for the first transition metal series are "built up" from the structure of Calcium (20 composites) with additional composites located centrally, and also forming an additional "central ring" of four composites or four composite pairs.

Structural geometries developed are consistent with transition element chemistry and crystal structures for each element.  Unpaired deuterium composites are available for chemical bonding.  Paired deuterium composites are "non-bonding".  Elements with an odd number of protons may have central protium or tritium composites, i.e. Manganese, Cobalt, Copper and possibly Vanadium(?). An alpha particle is expected to be located centrally for Zinc isotopes.

Structures indicate that there may be multiple structural isomers for a number of transition metal isotopes.

Proposed structures for more common/stable isomers are as follows:

Scandium 45
Titanium 46
Titanium 47
d: 2p, 2n (x6)
d: 2p, 2n (x4)
            1n (x2)
d: 2p,2n (x4)
           1n (x2)
s: 2p,2n
s: 2p,2n
s: 2p,2n
Copyright S. Brink.
p: 1p, 1n (x4), 2p,2n (x4)
p: 1p, 1n (x4), 2p,2n (x4)
Copyright S. Brink.
Copyright S. Brink.
p: 1p,1n (x3), 1n (x3), 2p,2n (x2)
Titanium 48
Titanium 49
Titanium 50
d: 2p, 2n (x4)
           1n (x2)
d: 2p, 2n (x4)
           1n (x2)
d: 2p, 2n (x4)
           1n (x2)
s: 2p,2n
s: 2p,2n
s: 2p,2n
p: 2p,2n (x4), 1p,2n (x2), 1p,1n (x2)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x3), 1p,1n (x1)
p: 2p, 2n (x4), 1p,2n (x4)
Copyright S. Brink.
Copyright S. Brink.
Vanadium 50
Vanadium 51
Chromium 50
d: 2p, 2n (x4)
     1p,1n (x1)
d: 2p,2n (x4)
    1p,2n (x1)
     
d: 2p,2n (x4)
     1p,2n (x2)
s: 2p,2n
s: 2n
s: 2p,2n
p: 2p,2n (x4), 1p,1n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
Chromium 52
Chromium 54
Chromium 53
d: 2p,2n (x4)
     1p,1n (x2)
d: 2p,2n (x4)
    1p,2n (x2)
d: 2p,2n (x4)
    1p,2n (x1)
    1p,1n (x1)
s: 2p,2n
s: 2p,2n
s: 2p,2n
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
Manganese 53
Iron 54
Manganese 55
d: 2p,2n (x4)
    1p,2n (x2)
d: 2p,2n (x6)
d: 2p,2n (x6)
s: 2p,2n
s: -
s: 2p,2n
p: 1p,2n (x5), 1p,1n (x2), 2p,2n (x1)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
p: 1p,2n (x7), 2p,2n (x1)
Note: Slightly radioactive
Iron 58
Iron 56
Iron 57
d: 2p,2n (x4)
    1p,1n (x2)
d: 2p,2n (x4)
    1p,1n (x2)
d: 2p,2n (x4)
    1p,1n (x2)
s: 2n
s: 2n
s: 1n
d2: -
d2: 1n (x4)
d2: 1n (x4)
Copyright S. Brink.
p: 1p, 1n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
Cobalt 59
Nickel 60
Nickel 58
d: 2p,2n (x6)
d: 2p,2n (x4)
    1p,2n (x2)
d: 2p,2n (x4)
    1p,1n (x2)
s: -
s: 2n
s: 2p,2n
d2: 2p,2n (x4)
Copyright S. Brink.
d2: -
d2: 1n (x4)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x2), 1p,2n (x3), 1n (x3)
Nickel 64
Nickel 61
Nickel 62
d: 2p,2n (x4)
     1p,2n (x1)
     1p,1n (x1)
d: 2p,2n (x4)
    1p,1n (x2)
d: 2p,2n (x4)
     1p,2n (x2)
s: 2p,2n
s: 2p,2n
s: 2p,2n
d2: 1n (x4)
d2: 1n (x4)
d2: 2n (x4)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Copper 63
Zinc 64
Copper 65
d: 2p,2n (x4)
          
s: 1p, 2n
p2: 1p, 1n (x8)
s: 2n
d: 2p,2n (x8)
s: 1p
d2: 1n (x4)
d2: 1n (x4)
d2: 2p,2n (x3), 2n (x1)
Copyright S. Brink.
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Zinc 66
Zinc 68
Zinc 67
d: 2p,2n (x4)
         2n (x2)
          
d: 2p,2n (x4)
2n (x2)
          
d: 2p,2n (x4)
          2n (x2)
          
s: 2n
s: 1n
s: -
d2: 2p,2n (x3), 2n (x1)
d2:2p,2n(x3),2n(x1)
d2: 2p,2n (x3), 2n (x1)
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Zinc 70
d: 2p, 2n (x4)
           1n (x2)
s: 6n
d2: 2p,2n (x3), 2n (x1)
p: 2p,2n (x8)
Copyright S. Brink.
Gallium , Germanium, Arsenic and Selenium
Proposed structures for nuclei of elements 31 to 34 are based around a core 's' shell of six neutrons, with fully filled 'p' (eight alphas) and 'd' (six alphas) shells. Additional composites are added to the 'd2' shell. 


Gallium 69
Gallium 71
Germanium 70
s: 6n
d: 2p, 2n (x6)
s: 6n
d: 2p, 2n (x6)
s: 6n
d: 2p,2n (x6)
d2: 1p, 2n (x3)
d2: 1p, 1n (x3), 1n
d2: 1p, 1n (x4)
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Copyright S. Brink.
Gernamium 72
Germanium 73
Germanium 74
s: 6n
d: 2p, 2n (x6)
s: 6n
d: 2p,2n (x6)
s: 6n
d: 2p,2n (x6)
p: 2p,2n (x8)
p: 2p,2n (x8)
p: 2p,2n (x8)
d2: 1p, 2n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Germanium 76
Germanium 78
Arsenic 75
s: 8n
d: 2p,2n (x6)
s: 10n
d: 2p, 2n (x6)
s: 6n
?: 2p, 2n (x10)
d2: 1p,2n (x4)
d2: 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
?: 2p,2n (x5) 1p,2n (x3)
Selenium 74
Selenium 76
Selenium 77
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
Copyright S. Brink.
: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
p: 2p, 2n (x2), 1n (x6)
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
Selenium 78
Selenium 79
Selenium 80
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
p: 2p, 2n (x2), 1n (x6)
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Selenium 82
s: 2n
d: 2p, 2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
Note: Slightly radioactive
Transition Metals (2nd Series) + Cd
Structures for the second transition series are expected to be consistent with a transition from the 1,4,8,4,1 alpha structure of Krypton towards the 1,6,13,6,1 structure of Xenon.

Elements upto Technetium are expected to have structures based on Krypton with additional deuterium bonding composites, consistent with progressive increases in chemical bonding coordination number for these elements.  Elements from Ruthenium to Silver have a progresively decreasing coordination number, consistent with the partial filling of a 24 alpha particle 6,12,6 structure.  Cadmium is consistent with a partially filled 6,13,6 structure. 

Proposed structures for typical isomers are as follows:
Zirconium 91
Yttrium 89
Zirconium 90
s: -
s: -
s: -
d: 1n (x6)
Copyright S. Brink.
d: 1n (x6)
d: 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Zirconium 96
Zirconium 92
Zirconium 94
s: 2n
s: 2n
s: 2n
Copyright S. Brink.
d: 1n (x6)
d: 2n (x6)
Copyright S. Brink.
Copyright S. Brink.
d: 1/2n (x6)
Molybdenum 94
Niobium 93
Molybdenum 92
s: 2n
s: 2n
s: -
d: 1n (x6)
Copyright S. Brink.
d: 1n (x6)
d: 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Molybdenum 97
Molybdenum 95
Molybdenum 96
s: 1n
s: 1n
s: 2n
d: 1/2n (x6)
Copyright S. Brink.
d: 1/2n (x6)
Copyright S. Brink.
d: 1/2n (x6)
Copyright S. Brink.
Technetium 99
Molybdenum 98
Molybdenum 100
s: -
s: -
s: 2n
d: 2n (x6)
Copyright S. Brink.
d: 2n (x6)
d: 2n (x6)
Copyright S. Brink.
Copyright S. Brink.
Note: Isotope radioactive
Ruthenium 100
Ruthenium 98
Ruthenium 99
s: 8n
s: 8n
s: 8n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Ruthenium 104
Ruthenium 101
Ruthenium 102
s: 12n
s: 9n
s: 10n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Palladium 104
Rhodium 103
Palladium 102
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Palladium 110
Palladium 106
Palladium 108
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Cadmium 106
Silver 107
Silver 109
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Cadmium 111
Cadmium 108
Cadmium 110
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Cadmium 114
Cadmium 112
Cadmium 113
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Note: Isotope radioactive
Cadmium 116
Copyright S. Brink.
Note: Isotope radioactive
Indium , Tin, Antimony and Tellurium
Proposed structures for nuclei of elements 49-52 are consistent with a progression from the diamond structures of the second transition metals to the proposed trancated cubic 3x3x6 based shell structure of Xenon.

Structures follow a body centred cubic structure. Crystal structures for each of these elements indicates that actual nuclei may be twisted cubic rather than straight cubic.


Tin 112
Indium 113
Indium 115
s: 2p,2n
s: -
s: 2n
s2: 8n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tin 116
Tin 114
Tin 115
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
s2: 10n
s2: 12n
s: 11n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tin 119
Tin 117
Tin 118
s: 2p, 2n
s: 2p, 2n
p: 1n (x6)
s: 2p, 2n
s2: 13n
s2: 15n
s2: 14n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tin 124
Tin 120
Tin 122
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
s2: 16n
s2: 18n
s2: 20n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Antimony 123
Tin 126
Antimony 121
s: 2p, 2n
s2: 22n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tellurium 120
Tellurium 122
Tellurium 124
Copyright S. Brink.
Tellurium 125
Tellurium 126
Tellurium 128
Tellurium 130
Lanthanide Series
The chemistry of this series is particularly unique as all elements predominantly form +3 compounds. This potentially indicates minimal variation in external outer shell structure of Lanthanide series nuclei. The chemistry of the series is consistent with internal filling of an outer shell structure through the series. Proposed structures are based on a Lathanum 137 outer shell with three unpaired bonding composites.  

Examples of potential structures for "more common" isotopes for each Lanthanide series element are shown below, noting that relative spacings of nucleons from the centre may vary from those shown, such that the actual nuclei shapes may be more "truncated octagonal" rather than cubic.


Lanthanum 139
Cerium 140
Praseodymium 141
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Neodymium 142
Promethium 147
Samarium 144
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Europium 151
Europium 153
Gladolinium 158
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Terbium 159
Dysprosium 164
Holmium 165
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Erbium 166
Thulium 169
Ytterbium 174
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Lutetium 175
Copyright S. Brink.
Transition Metals (Third Series) + Hg
Element of the third transition series metals are relatively rare, but typically have unique properties which make them valuable for a range of applications.

The series features gold, unique for it's resistance to oxidisation, and Iridium, the element with the highest observed chemical coordination number, +9.

Proposed structures for the first six elements are based on a 8,2,24 "expanded cubic" alpha structure, i.e. cubic, with four additional alpha composites aligned with each cube face, and two additional central alpha composites.  Additional proton based composites (tritium nuclei) are added externally, possibly located along cubic edges, consistent with coordination numbers above +7, (i.e. up to +9).

Structures for Plantium, Gold (and Mercury, TBC) are expected to be based on a 8,6,24 "expanded cubic" alpha structure.


Hafnium 174
Hafnium 176
Hafnium 177
s: 2n
s: 2n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Hafnium 179
Hafnium 178
Hafnium 180
s:2n
s: 2n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tantalum 181
Tungsten 180
Tungsten 182
s: 2n
s: -
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Tungsten 183
Tungsten 184
Tungsten 186
s: 3n
s: 4n
s: 6n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Rhenium 185
Rhenium 187
Osmium 184
s: 4n
s: 6n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Osmium 186
Osmium 187
Osmium 188
s: 4n
s: 5n
s: 6n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Osmium 189
Osmium 190
Osmium 192
s: 7n
s: 8n
s: 10n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Iridium 191
Iridium 193
Platinum 190
s: 8n
s: 10n
s: 6n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Platinum 192
Platinum 194
Platinum 195
s: 8n
s: 10n
s: 11n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Platinum 196
Platinum 198
Gold 197
s: 12n
s: 14n
s: 12n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Mercury 196...
working on it...
Thallium, Lead, Bismuth and Polonium
Elements 81 to 84 include the heaviest stable non-radioactive isotope.  Originally this was thought to be Bismuth 209, but following identification of some radioactivity (all be it with a very long half life, i.e. 1019 years), Lead 208 is now considered to be the most stable non-radioactive isotope.

Proposed nucleus structures are based on the Radon 222 nucleus without the outer shell of 12 cubic edge-aligned neutrons.
Thallium 203
Thallium 205
Lead 206
s: 1p
s: 1p,2n
s: -
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Lead 208
Lead 207
Bismuth 209
s: 1n
s: 2n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Very slightly radioactive
Polonium 209
s: 1n
Copyright S. Brink.
Highly radioactive
Actinide Series
The Actinide series includes the heaviest naturally occuring isotopes.  All isotopes in the series have some degree of radioactivity.

Actinium, Thorium, Protactium and Uranium isotopes are naturally occuring.  Elements beyond this, i.e. from Neptunium, do not occur naturally in any significant quanities, and are highly radioactive with short half lives.

Isotopes are expected to follow the geometry of Radon 222, with additional nucleons added externally.  Crystal structures for each of the elements provide an indication of the possible geometric configuration of unpaired bonding composites, noting that multiple structural isomers are expected.
Actinium 227
Actinium 225
Actinium 226
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Highly Radioactive
Highly Radioactive
Highly Radioactive
Protactinium 231
Thorium 230
Thorium 232
s: 2p, 1n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Radioactive
Very slightly radioactive
Uranium 233
Uranium 234
Uranium 235
s: 2p, 1n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Radioactive
Radioactive
Uranium 236
Uranium 237
Uranium 238
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Radioactive
Radioactive
The new model clearly demonstrates a direct link between chemistry and nuclei structures.

Chemistry, in fact, actually originates directly from the geometry and the orientation of nucleons with the nucleus!!!