Atomic Nuclei  
The geometric structures of the atomic nuclei have remained unsolved since the discovery of the atomic nucleus by Ernest Rutherford in the early 20th century.  

A new atomic model, that recognises a link between electron bonding configurations and the geometry of atomic nuclei, is now allowing nucleus geometries to be resolved.

Proposed structures are based on multi-nucleon composites, primarily alpha particle composites, but also include deuterium nuclei composites, tritium composites, single neutrons and double neutrons. Alpha particle composites are 'non-bonding' as the two protons are paired.  Deuterium and tritium composites are 'bonding', with unpaired protons 'linking' with unpaired protons of adjacent nuclei via chemical bonds.




Do the Atomic Nuclei Have
Formal Structures?


A range of different types of structures for the atomic nuclei have been proposed, including gaseous, liquid, molecular cluster, lattice and composite types.

Cook (2010) presented a detail discussion, comparing different types of structures and concluded that a lattice type structure was most consistent with experimental observations.  

Lattice proposals to date have typically been based on either face centred cubic (FCC) packing (Wigner, 1937, Everling, 1958, Lezuo, 1974, Cook, 1976) or simple cubic packing (SCP), (Bauer, 1985, Meissner, 2008, Mathis, 2011), but have not  yet been able to demonstrate geometric simplicity or full consistency with isotopic patterns and experimental observations.


"The new nucleus structures clearly show  geometric simplicity and symmetry for isotopes throughout periodic table."

<----  alpha particle
        (non bonding)

"The new model demonstrates that chemistry originates from nucleus structures!!!"
<---- double neutron


Proposed Krypton 86 Atomic Nucleus Structure

Proposed Nucleus Structures
In the new model, nuclei have formal structures with geometries determined by "nuclear bonds" that link composites/nucleons. "Nuclear bonds" types include proton-proton, proton-neutron and neutron-neutron. Protons form one "nuclear bond" and neutrons can form up to four "nuclear bonds". For composites, the number of nuclear bonds is determined by the number of protons and neutrons in the composite. For example, an alpha particle composite can form eight bonds from its two neutrons and two bonds from its protons.  

Composites which contain only one neutron, (single neutron, deuterium nuclei, helium-3 nuclei), will form bonds in planar or cubic orientations.

Composites which have two neutrons (double neutron, tritium nuclei, alpha particle) will form bonds in an octagonal configuration, with additional axial proton bonds.

More complex nuclei are primarlity based on alpha particles, so are expected to have structures based on a body centred cubic packing configuration. 

Nucleus structures can be developed based on these principles that are geometric and directly match chemical bonding configurations and elemental solid phase crystal structures.  


Body Centred Cubic Packing - hex-centred
​​
Nucleus structural geometries are determined by "nuclear bond" configurations.

Hydrogen
Proposed nucleus structures for hydrogen isotopes are nucleon composites, rather than linked individual nucleons.


Hydrogen 3
Hydrogen 1
Hydrogen 2
s: 1p
s: 1p, 1n
s: 1p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Protium
Tritium (radioactive)
Deuterium
Helium and Noble (Inert) Gases
Noble (Inert) gases are unique as they form almost no chemical compounds with other elements. The proposed relationship between chemical bonding orientations and nuclei structures suggests a special geometric symmetry for Noble gas nuclei.  

Proposed Noble gas nuclei structures have some similarities to geometries proposed by Cook (1978), but are based on deuterium pairs (alpha composites), rather than individual nucleons.  

Proposed Noble gas nucleus structures have geometric symmetry, forming "complete" outer shells, with minimal availablity for chemical bonding, except for basic dimers (He2, Ne2, Ar2, etc.), consistent with observed chemistry.

Helium 3
Helium 4
Neon 20
s: 2p, 2n
s: 2p, 1n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
p: 2p, 2n (x4)
Argon 36
Neon 21
Neon 22
s: 2p, 2n
d: 1n 
s: 2p, 2n
      d: 1n (x2)
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
p: 2p, 2n (x4)
p: 2p, 2n (x4)
Copyright S. Brink.
p: 2p, 2n (x8)
Argon 38
Argon 40
Krypton 78
s: 2p, 2n
d: 1n (x2)
s: 2p, 2n
d: 2n (x2)
s: 2p,2n (x6)
d: 1n (x6)
p: 1p, 1n
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Very slightly radioactive
Krypton 80
Krypton 83
Krypton 82
s: 2p,2n (x6)
d: 2n (x2),
       n (x4)
s: 2p,2n (x6)
d: 2n (x4),
       n (x2)
s: 2p,2n (x6)
d: 2n (x5),
        n (x1)
p: 1p, 1n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x12)
p: 2p,2n (x12)
p: 2p,2n (x12)
Krypton 84
Xenon 124
Krypton 86
d: 2n (x6)
s: 2p, 2n
s: 2p,2n (x6)
d: 2n (x6)
s: 2p,2n(x6),
2n (x1)
       d: 2p, 2n (x6)
       ?: 2p, 2n (x12)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x12)
p: 2p,2n (x12)
p: 2p,2n (x16)
Xenon 129
Xenon 126
Xenon 128
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
s: 2p, 2n
s: 2p, 1n
s: 2p, 2n
       d: 2p, 2n (x6)
       d: 2p, 2n (x6)
       d: 2p, 2n (x6)
p: 2p,2n (x8)
       ?: 2p, 2n (x12)
       ?: 2p, 2n (x12)
p: 2p,2n (x8)
       ?: 2p, 2n (x12)
p: 2p,2n (x8)
Xenon 132
Xenon 130
Xenon 131
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
       d: 2p, 2n (x6)
       d: 2p, 2n (x6)
       d: 2p, 2n (x6)
p: 2p,2n (x8)
       ?: 2p, 2n (x12)
       ?: 2p, 2n (x12)
       ?: 2p, 2n (x12)
p: 2p,2n (x8)
p: 2p,2n (x8)
Radon 222
Xenon 134
Xenon 136
Copyright S. Brink.
Copyright S. Brink.
s: 2p, 2n
s: 2p, 2n
       d: 2p, 2n (x6)
s: 2p, 2n
       d: 2p, 2n (x6)
Copyright S. Brink.
p: 2p,2n (x8)
       ?: 2p, 2n (x12)
p: 2p,2n (x8)
       ?: 2p, 2n (x12)
Radioactive
Radioactive
Lithium and Alkali Metals (Group I)
The proposed structure of Lithium isotopes are distict from the structures of the other Group I alkali metal elements, particularly as they feature  "double nuclear bonds" between neutrons. 

Proposed structures for other Group I Alkali metals are similar to the preceeding Noble Gas element, but have an additional proton, as a deuterium or tritium nuclei composite.

Proposed nucleus structures are shown below: 

Sodium 23
Lithium 6
Lithium 7
d: 1p,1n & 1n
s: 2p, 2n
s: -
s: -
p: 1p, 1n / 1n (half filled)
p: 2p,2n (x4)
Copyright S. Brink.
p: 1p, 1n
Copyright S. Brink.
Copyright S. Brink.
Potassium 41 
Potassium 39
Potassium 40
   d: 2p,1n / 2n
 d: 1p,1n / 1n
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
 d: 1p,1n / 2n
p: 1p, 1n (x8)
Copyright S. Brink.
p: 1p, 1n (x8)
p: 1p, 1n (x8)
Copyright S. Brink.
Copyright S. Brink.
Slightly radioactive
Cesium 133 
Rubidium 85
Rubidium 87 
s: 2p, 2n
d: 2p,2n (x6)
s: 1p, 2n
?: 2p, 2n (x12)
s: 1p, 2n
?: 2p, 2n (x12)
s2: 10n
s2: 12n
?: 2p, 2n (x12)
p: 2p,2n (x8)
Copyright S. Brink.
d: 2p, 2n (x6)
d: 2p, 2n (x6)
Copyright S. Brink.
Copyright S. Brink.
Francium 223
Copyright S. Brink.
Highly radioactive
Beryllium and Alkaline Earth Metals (Group II)
The proposed struture for the Beryllium 9 nucleus is unique, featuring four deuterium nuclei and a central neutron in an expanded planar configuration, consistent with its observed large fast neutron capture cross section (~6 barns) for this isotope.  The proposed structure has deuterium composites linked by double "nuclear bonds".  

Other Group II elements are similar to preceeding Noble Gases, but have two additional composites with unpaired deuterium/tritium composites available for chemical bonding. 

Proposed nuclei structures are shown below: 

Beryllium 9
Magnesium 24
Magnesium 25
s: 1n
s: 2p, 2n
s: 2p, 2n
p: 1p, 1n
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x4), 1p,1n (x2), 1n
Copyright S. Brink.
p: 2p,2n (x4), 1p,1n (x2)
Magnesium 26
Calcium 42
Calcium 40
d: 1p, 2n (x2)
   
s: 2p, 2n
s: 2p, 2n
s: 2p,2n
d: 1p, 1n (x2)
p: 2p,2n (x4), 1p,1n (x2), 2n (x2)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
Calcium 43
Calcium 44
Calcium 46 
d: 1p,1n (x2)
           1n (x4)
s: 2p,1n
s: 2p,2n
s: 2p,2n
d: 1p, 2n (x2)
            1n (x4)
d: 1p, 1n (x2)
             1n (x4)
Copyright S. Brink.
p: 2p, 2n (x8)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Calcium 48
Strontium 84
Strontium 86
s: 2p,2n
d: 1p, 1n (x2)
           2n (x4)
d: 2p, 2n (x6)
s: 1n (x8)
1p,1n (x2)
s: 1n (x10)
1p,1n (x2)
d: 2p, 2n (x6)
d2: 2p,2n (x4)
p: 2p, 2n (x8)
d2: 2p,2n (x4)
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
Radioactive
Strontium 87 
Strontium 88
Barium 130 
s: 1n (x11)
1p,1n (x2)
d: 2p, 2n (x6)
s: 1n (x12)
1p,1n (x2)
d: 2p, 2n (x6)
s: 2p, 2n
       d: 2p,2n (x6)
d2: 2p,2n (x4)
d2: 2p,2n (x4)
p: 2p,2n (x8)
p: 2p,2n (x8)
p: 2p, 2n (x8)
       ?: 2p,2n (x12)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Barium 132  
Barium 134
Barium 135 
s: 2p, 2n
s: 2p, 1n
s: 2p, 2n
       d: 2p,2n (x6)
       d: 2p,2n (x6)
d: 2p,2n (x6)
p: 2p, 2n (x8)
       ?: 2p,2n (x12)
p: 2p, 2n (x8)
       ?: 2p,2n (x12)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
       ?: 2p,2n (x12)
Copyright S. Brink.
Barium 136 
Barium 137
Barium 138
s: 2p, 2n
d:  2p,2n (x6)
s: 2p, 1n
d: 2p,2n (x6)
s: 2p, 2n
d: 2p,2n (x6)
       ?: 2p,2n (x12)
       ?: 2p,2n (x12)
p: 2p, 2n (x8)
       ?: 2p,2n (x12)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Radium 226 
Copyright S. Brink.
Note: Radioactive
Boron, Carbon, Nitrogen and Oxygen
Proposed nucleus structures for elements 5-8 feature a partly filled "p" shell, but are expected to have a variety of geometries.  

Atomic mass data indicates that Boron 10, with five protons and five neutrons, is expected to be comprised of five deuterium composites, one short of the six composites needed for a more stable octagonal structure. This consistent with the relatively high neutron capture cross section for Boron 10, relative to the capture cross section for other isotopes for elements 5-8. This structure is also consistent with the chemistry of Boron compounds such as Boron Fluoride, which has a bond angle just less than 120 degrees. Boron 10 may feature "double nuclear" bonds, which are "available" for neutron capture.

Carbon nuclei may multiple structural isomers, depending on the type of carbon, i.e. organic, graphite or diamond.

Nitrogen 14 and Oxgyen 16 are expected to include a central alpha particle (deuterium nuclei aligned in opposing directions), single "bonding" deuterium nuclei, and additional "unaligned" deuterium nuclei composites that are are respponsible for electron "lone pairs."  
Boron 10
Boron 11
Carbon 12
s: 1p, 1n (x2)
s: 1p, 1n (x2)
s: 1p, 1n (x2)
p: 1p, 1n (x3)
d: 1p, 1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
 d: 1p, 1n (x3), 1n
Organic
Carbon 12
Carbon 12 
Carbon 13
s: -
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
p: 1p, 1n (x4)
d: 1p, 1n (x6)
Copyright S. Brink.
p: 1p, 1n (x4)
Diamond
Graphite
Diamond
Carbon 14
Nitrogen 14
Oxygen 16
p: 1p, 1n (x5)
s: 2n
s: 2p, 2n
s: 2p, 2n
               lone​​​​​​​​ pair   ------>
    <--- orientations

         lone​​​​​​  pair
     orientation  ---->

p: 1p, 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
d: 1p, 1n (x6)
Graphite
Fluorine and the Halogens
Halogens are highly electronegative elements, forming ionic and covalently bonded compounds, typically with electro positive elements, such as alkali metals (Group I), alkaline earth metals (Group II) and other metals. Proposed structures are as follows:
Fluorine 19
Chlorine 35
Chlorine 37 
s: 1p, 2n
s: 1p, 2n
s: 1p, 2n
d: 1n (x2)
Copyright S. Brink.
p: 2p, 2n (x4) 
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Bromine 79
Bromine 81
Iodine 127 
d: 1/2p,2n (x6)
d: 1/2p,2n (x6)
s: -
s: 2n
s: 1p, 2n
      d: 2p,2n (x6)
?: 2p,2n (x12)
Copyright S. Brink.
p: 1n (x8)
?: 2p,2n (x12)
p: 1n (x8)
p: 2p,2n (x8)
?: 2p, 2n (x12)
Copyright S. Brink.
Copyright S. Brink.
Astatine 209
s: 1p, 2n
Note: Highly radioactive
Aluminium, Silicon, Phosphorous and Sulfur
Proposed structures for the second elements in groups 13-16 are based around 14 composites, generally deuterium nuclei, (1p,1n) and single neutrons (1n), arranged as six composites in an octagonal shape ('d' shell), with an outer shell of eight face-centred composites ('p' shell).  Additional composites are added centrally ('s' shell).  The 's' shell is overfilled for Sulfur 33, 34 and 36, 

Aluminium 27
Silicon 28
Silicon 29  
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
d: 1n
p: 2p, 2n (x4), 1p,1n (x3), 1n
p: 2p,2n (x4), 1p,1n (x4)
p: 2p, 2n (x4), 1p,1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Silicon 30
Phosphorous 31
Sulfur 32
d: 1n (x2)
d: 1p,1n & 1n
d: 1p,1n (x2)
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
p: 2p,2n (x4), 1p,1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
p: 2p, 2n (x4), 1p,1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Sulfur 33  
Sulfur 34
Sulfur 36
d: 1p,1n & 
      1p,2n
s: 2p, 2n
s: 2p, 2n
d: 1p,2n (x2)
s: 2p, 2n
d: 1p,1n (x2)
    & 1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
p: 2p,2n (x4), 1p,1n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Transition Metals (1st Series) + Zn
Proposed nucleus structures for the first transition metal series are based on a 1,4,(5+4),4,1 structure, based on the proposed Argon alpha based cubic structure (4,1,4), with additional composites at each of the faces (6 no.), forming a "d shell".  For series elements from Iron onwards, an additional four composites are added, forming a "d2 shell".

Structural geometries developed based on this model are consistent with chemistry coordination numbers and crystal structures for each element. 


Geometries identified indicate that there will be multiple structural isomers for many isotopes.

Examples of typical structures expected for more common/stable isomers are as follows:
Scandium 45
Titanium 46
Titanium 47
d: 2p, 2n (x6)
d: 2p, 2n (x4)
            1n (x2)
d: 2p,2n (x4)
           1n (x2)
s: 2p,2n
s: 2p,2n
s: 2p,2n
Copyright S. Brink.
p: 1p, 1n (x4), 2p,2n (x4)
p: 1p, 1n (x4), 2p,2n (x4)
Copyright S. Brink.
Copyright S. Brink.
p: 1p,1n (x3), 1n (x3), 2p,2n (x2)
Titanium 48
Titanium 49
Titanium 50
d: 2p, 2n (x4)
           1n (x2)
d: 2p, 2n (x4)
           1n (x2)
d: 2p, 2n (x4)
           1n (x2)
s: 2p,2n
s: 2p,2n
s: 2p,2n
p: 2p,2n (x4), 1p,2n (x2), 1p,1n (x2)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x3), 1p,1n (x1)
p: 2p, 2n (x4), 1p,2n (x4)
Copyright S. Brink.
Copyright S. Brink.
Vanadium 50
Vanadium 51
Chromium 50
d: 2p, 2n (x4)
     1p,1n (x1)
d: 2p,2n (x4)
    1p,2n (x1)
     
d: 2p,2n (x4)
     1p,2n (x2)
s: 2p,2n
s: 2n
s: 2p,2n
p: 2p,2n (x4), 1p,1n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
Chromium 52
Chromium 54
Chromium 53
d: 2p,2n (x4)
     1p,1n (x2)
d: 2p,2n (x4)
    1p,2n (x2)
d: 2p,2n (x4)
    1p,2n (x1)
    1p,1n (x1)
s: 2p,2n
s: 2p,2n
s: 2p,2n
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x4), 1p,2n (x4)
Copyright S. Brink.
Manganese 53
Iron 54
Manganese 55
d: 2p,2n (x4)
    1p,2n (x2)
d: 2p,2n (x6)
d: 2p,2n (x6)
s: 2p,2n
s: -
s: 2p,2n
p: 1p,2n (x5), 1p,1n (x2), 2p,2n (x1)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
p: 1p,2n (x7), 2p,2n (x1)
Note: Slightly radioactive
Iron 58
Iron 56
Iron 57
d: 2p,2n (x4)
    1p,1n (x2)
d: 2p,2n (x4)
    1p,1n (x2)
d: 2p,2n (x4)
    1p,1n (x2)
s: 2n
s: 2n
s: 1n
d2: -
d2: 1n (x4)
d2: 1n (x4)
Copyright S. Brink.
p: 1p, 1n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
Cobalt 59
Nickel 60
Nickel 58
d: 2p,2n (x6)
d: 2p,2n (x4)
    1p,2n (x2)
d: 2p,2n (x4)
    1p,1n (x2)
s: -
s: 2n
s: 2p,2n
d2: 2p,2n (x4)
Copyright S. Brink.
d2: -
d2: 1n (x4)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x2), 1p,2n (x3), 1n (x3)
Nickel 64
Nickel 61
Nickel 62
d: 2p,2n (x4)
     1p,2n (x2)
 
d: 2p,2n (x4)
    1p,1n (x2)
d: 2p,2n (x4)
     1p,2n (x2)
s: 2p,2n
s: 2p,1n
s: 2p,2n
d2: 1n (x4)
d2: 1n (x4)
d2: 2n (x4)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Copper 63
Zinc 64
Copper 65
d: 2p,2n (x6)
         
          
s: 1p, 2n
d: 2p, 2n (x6)
s: 2n
d: 2p,2n (x6)
s: 1p
d2: 1p,2n(x2)
       1n (x2)
d2: 1n (x4)
d2: 1n (x4)
Copyright S. Brink.
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Zinc 66
Zinc 68
Zinc 67
d: 2p,2n (x6)

          
d: 2p,2n (x6)
     
          
s: 2n
d: 2p,2n (x6)
        
          
s: 1n
s: 2n
d2: 1p,2n(x2)
       1n (x2)
d2: 1p,2n(x2)
       2n (x2)
d2: 1p,2n(x2)
       2n (x2)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Zinc 70
d: 2p, 2n (x6)
        
s: -
Copyright S. Brink.
d2: 1p,1n (x2),
       1n (x10)
p: 2p,2n (x8)
Gallium , Germanium, Arsenic and Selenium
Proposed structures for nuclei of elements 31 to 34 are based around a core 's' shell of six neutrons, with fully filled 'p' (eight alphas) and 'd' (six alphas) shells. Additional composites are added to the 'd2' shell. 


Gallium 69
Gallium 71
Germanium 70
s: 6n
d: 2p, 2n (x6)
s: 6n
d: 2p, 2n (x6)
s: 6n
d: 2p,2n (x6)
d2: 1p, 2n (x3)
d2: 1p, 1n (x3), 1n
d2: 1p, 1n (x4)
p: 2p,2n (x8)
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
Copyright S. Brink.
Gernamium 72
Germanium 73
Germanium 74
s: 6n
d: 2p, 2n (x6)
s: 6n
d: 2p,2n (x6)
s: 6n
d: 2p,2n (x6)
p: 2p,2n (x8)
p: 2p,2n (x8)
p: 2p,2n (x8)
d2: 1p, 2n (x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Germanium 76
Germanium 78
Arsenic 75
s: 8n
d: 2p,2n (x6)
s: 10n
d: 2p, 2n (x6)
s: 6n
?: 2p, 2n (x10)
d2: 1p,2n (x4)
d2: 1p,2n (x4)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
p: 2p,2n (x8)
Copyright S. Brink.
?: 2p,2n (x5) 1p,2n (x3)
Selenium 74
Selenium 76
Selenium 77
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
Copyright S. Brink.
: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
p: 2p, 2n (x2), 1n (x6)
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
Selenium 78
Selenium 79
Selenium 80
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
p: 2p, 2n (x2), 1n (x6)
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Selenium 82
s: 2n
d: 2p, 2n (x6)
d2: 2p,2n (x6)
      1p,2n (x6)
p: 2p, 2n (x2), 1n (x6)
Copyright S. Brink.
Note: Slightly radioactive
Transition Metals (2nd Series) + Cd
Structures for the second transition series are expected to be consistent with a transition from the 1,4,8,4,1 alpha structure of Krypton towards the 1,6,13,6,1 structure of Xenon.

Elements upto Technetium are expected to have structures based on Krypton with additional deuterium bonding composites, consistent with progressive increases in chemical bonding coordination number for these elements.  Elements from Ruthenium to Silver have a progresively decreasing coordination number, consistent with the partial filling of a 24 alpha particle 6,12,6 structure.  Cadmium is consistent with a partially filled 6,13,6 structure. 

Proposed structures for typical isomers are as follows:
Yttrium 89
Zirconium 90
Zirconium 91
s: -
s: -
s: -
d: 1n (x6)
Copyright S. Brink.
d: 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
d: 1n (x6)
Zirconium 96
Zirconium 92
Zirconium 94
s: 2n
s: 2n
s: 2n
d: 1n (x6)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
d: 1/2n (x6)
d: 2n (x6)
Niobium 93
Molybdenum 94
Molybdenum 92
s: 2n
s: -
s: 2n
Copyright S. Brink.
d: 1n (x6)
Copyright S. Brink.
d: 1n (x6)
Copyright S. Brink.
d: 1n (x6)
Molybdenum 95
Molybdenum 96
Molybdenum 97
s: 1n
s: 2n
s: 1n
Copyright S. Brink.
d: 1/2n (x6)
Copyright S. Brink.
d: 1/2n (x6)
d: 1/2n (x6)
Copyright S. Brink.
Technetium 99
Molybdenum 98
Molybdenum 100
s: -
s: -
s: 2n
d: 2n (x6)
d: 2n (x6)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
d: 2n (x6)
Note: Isotope radioactive
Ruthenium 98
Ruthenium 99
Ruthenium 100
s: 8n
s: 8n
s: 8n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Ruthenium 101
Ruthenium 102
Ruthenium 104
s: 9n
s: 10n
s: 12n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Rhodium 103
Palladium 102
Palladium 104
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Palladium 106
Palladium 108
Palladium 110
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Cadmium 106
Silver 107
Silver 109
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Cadmium 111
Cadmium 108
Cadmium 110
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Cadmium 114
Cadmium 112
Cadmium 113
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Note: Isotope radioactive
Cadmium 116
Copyright S. Brink.
Note: Isotope radioactive
Indium , Tin, Antimony and Tellurium
Proposed structure for Indium is based on 26 composites, with three of these unfilled, (i.e. Tritium nuclei). 

Tin structure is based on the 27 composite Xenon structure, with four of the composites unfilled.

Proposed structures for Antimony and Tellurium are based on 28 composites and are particularly unique, as they have a two inner 's' shell composites and an expanded 2x2x3 'p' shell.
Tin 112
Indium 113
Indium 115
d: 2p, 2n (x3)
    1p, 2n (x3)
s: 2p,2n
d: 2p, 2n (x6)
s: -
d: 2p, 2n (x3)
    1p, 2n (x3)
s: 2n
?: 1p,2n (x4)
    2p,2n (x8)
?: 2p,2n (x12)
?: 2p,2n (x12)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Tin 116
Tin 114
Tin 115
s: 2p, 2n
d: 2p, 2n (x6)
s: 2p, 2n
d: 2p, 2n (x6)
s: 2p, 1n
d: 2p, 2n (x6)
?: 1p,2n (x4)
    2p,2n (x8)
?: 1p,2n (x4)
    2p,2n (x8)
?: 1p,2n (x4)
    2p,2n (x8)
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Tin 119
Tin 117
Tin 118
d: 2p, 2n (x6)
s: 2p, 1n
s: 2p, 1n
d: 2p, 2n (x6)
s: 2p, 2n
d: 2p, 2n (x6)
?: 1p,2n (x4)
    2p,2n (x8)
?: 1p,2n (x4)
    2p,2n (x8)
?: 1p,2n (x4)
    2p,2n (x8)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Tin 124
Tin 120
Tin 122
d: 2p, 2n (x6)
d: 2p, 2n (x6)
d: 2p, 2n (x6)
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
?: 1p,2n (x4)
    2p,2n (x8)
?: 1p,2n (x4)
    2p,2n (x8)
?: 1p,2n (x4)
    2p,2n (x8)
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
p: 2p, 2n (x8)
Copyright S. Brink.
Antimony 123
Tin 126
Antimony 121
s: 2p,2n (x2)
d: (x10)
d: 2p, 2n (x6)
s: 2p,1n (x2)
d: (x10)
s: 2p, 2n
?: 1p,2n (x4)
    2p,2n (x8)
p: 2p, 2n (x8)
Copyright S. Brink.
Copyright S. Brink.
p: 2p, 2n (x12)
Copyright S. Brink.
p: 2p, 2n (x12)
Tellurium 123
Tellurium 120
Tellurium 122
s: 2n (x2)
s: 2n (x2)
s: 2n (x2)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tellurium 126
Tellurium 124
Tellurium 125
s: - (x2)
s: 1n (x1)
s: 1n (x2)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tellurium 128
Tellurium 130
s: 2n (x2)
s: 2n (x2)
Copyright S. Brink.
Copyright S. Brink.
Lanthanide Series
The chemistry of this series is particularly unique as all elements predominantly form +3 compounds. This potentially indicates minimal variation in external outer shell structure of Lanthanide series nuclei. The chemistry of the series is consistent with internal filling of an outer shell structure through the series. Proposed structures are based on a 137 nucleon outer shell, comprised of 27 alpha particles (non bonding), three tritium nuclei composites (bonding) and 20 neutrons.

Experimental data indicates than many elements with between 150 and 190 nucleons are eliptical rather than spherical,  (Krane, 1987), indicating that the outer shell is expanded along 2 axis for many isotopes in this range.

Examples of potential structures for some of the stable isotopes for each Lanthanide series element are shown below:


Lanthanum 139
Cerium 140
Praseodymium 141
s: 2n
s: 2p,1n
s: 2p,2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Neodymium 142
Neodymium 150
Promethium 147
s: 3p,2n
s: 3p,2n
s: 2n
p: 1p(x4),
     1n(x4)
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Samarium 144
Samarium 147
Samarium 154
s: 1p,2n
s: 1p,1n
s: 1p,2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Europium 151
Europium 153
Gladolinium 152
s: -
s: 2n
s: -
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Gladolinium 160
Terbium 159
Dysprosium 164
s: -
s: 2n
s: 1p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Erbium 170
Thulium 169
Holmium 165
s: 2p, 2n
s: 1p, 2n
s: -
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Ytterbium 166
Ytterbium 174
Lutetium 175
d: 1p,2n (x4), 2p,2n (x2)
d: 1p,2n (x4), 2p,2n (x2)
d: 1p,2n (x4), 2p,2n (x2)
s: 1p
s: 1p,2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
p: 2p,2n (x8)
p: 2p,2n (x8)
p: 2p,2n (x8)
Transition Metals (Third Series) + Hg
Elements of the third transition series metals are relatively rare, but typically have unique properties which make them valuable for a range of applications, for example gold is unique for it's resistance to oxidisation, and Iridium is the element with the highest observed chemical coordination number, +9.

Proposed structures for the first six elements are based on a 8,2,24 "expanded cubic" alpha structure, i.e. cubic, with four additional alpha composites aligned with each cube face, and two additional central alpha composites.  Additional proton based composites (tritium nuclei) are added externally, possibly located along cubic edges, consistent with coordination numbers above +7, (i.e. up to +9).

Structures for Plantium and Gold are expected to be based on a 8,6,24 "expanded cubic" alpha structure.

The proposed structure for mercury is a 12, 24, (6) alpha structure with the outer shell being partly filled. For 2+ compounds, the outer shell would be expected to be arranged as two alphas, two tritium nuclei and two double neutrons. 



Hafnium 174
Hafnium 176
Hafnium 177
s: 2n
s: 2n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Hafnium 179
Hafnium 178
Hafnium 180
s:2n
s: 2n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Tantalum 181
Tungsten 180
Tungsten 182
s: 2n
s: -
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Tungsten 183
Tungsten 184
Tungsten 186
s: 3n
s: 4n
s: 6n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Rhenium 185
Rhenium 187
Osmium 184
s: 4n
s: 6n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Osmium 186
Osmium 187
Osmium 188
s: 4n
s: 5n
s: 6n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Osmium 189
Osmium 190
Osmium 192
s: 7n
s: 8n
s: 10n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Iridium 191
Iridium 193
Platinum 190
s: 8n
s: 10n
s: 6n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Platinum 192
Platinum 194
Platinum 195
s: 8n
s: 10n
s: 11n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Platinum 196
Platinum 198
Gold 197
s: 12n
s: 14n
s: 12n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Mercury 196
Mercury 198
Mercury 199
s: -
s: -
s: 1n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Mercury 200
Mercury 201
Mercury 202
s: 2n
s: 3n
s: 4n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Mercury 204
s: 6n
Copyright S. Brink.
Thallium, Lead, Bismuth and Polonium
Elements 81 to 84 include the heaviest stable non-radioactive isotope.  Originally this was thought to be Bismuth 209, but following identification of some radioactivity (all be it with a very long half life, i.e. 1019 years), Lead 208 is now considered to be the most stable non-radioactive isotope.

Proposed nucleus structures are based on the Radon 222 nucleus without the outer shell of 12 cubic edge-aligned neutrons.
Thallium 203
Thallium 205
Lead 206
s: 1p
s: 1p,2n
s: -
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Lead 208
Lead 207
Bismuth 209
s: 1n
s: 2n
s: 2n
Copyright S. Brink.
Copyright S. Brink.
Very slightly radioactive
Polonium 209
s: 1n
Copyright S. Brink.
Highly radioactive
Actinide Series
The Actinide series includes the heaviest naturally occuring isotopes.  All isotopes in the series have some degree of radioactivity.

Actinium, Thorium, Protactium and Uranium isotopes are naturally occuring.  Elements beyond this, i.e. from Neptunium, do not occur naturally in any significant quanities, and are highly radioactive with short half lives.

Isotopes are expected to follow the geometry of Radon 222, with additional nucleons added externally.  Crystal structures for each of the elements provide an indication of the possible geometric configuration of unpaired bonding composites, noting that multiple structural isomers are expected.
Actinium 227
Actinium 225
Actinium 226
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Highly Radioactive
Highly Radioactive
Highly Radioactive
Protactinium 231
Thorium 230
Thorium 232
s: 2p, 1n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Radioactive
Very slightly radioactive
Uranium 233
Uranium 234
Uranium 235
s: 2p, 1n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Radioactive
Radioactive
Uranium 236
Uranium 237
Uranium 238
s: 2p, 2n
s: 2p, 2n
s: 2p, 2n
Copyright S. Brink.
Copyright S. Brink.
Copyright S. Brink.
Radioactive
Radioactive
Radioactive
The new model clearly demonstrates a direct link between chemistry and nuclei structures.

Chemistry, in fact, actually originates directly from the geometry and the orientation of nucleons with the nucleus!!!